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ABSTRACT
The P300 speller brain-computer interface (BCI) provides a means of communication for those 
suffering from advanced neuromuscular diseases such as amyotrophic lateral sclerosis (ALS). Recent 
literature has incorporated language-based modeling, which uses previously chosen characters 
and the structure of natural language to modify the interface and classifier. Two complementary 
methods of incorporating language models have previously been independently studied: predictive 
spelling uses language models to generate suggestions of complete words to allow for the selection 
of multiple characters simultaneously, and language-model-based classifiers have used prior 
characters to create a prior probability distribution over the characters based on how likely they are 
to follow. In this study, we propose a combined method which extends a language-based classifier 
to generate prior probabilities for both individual characters and complete words. In order to gage 
the efficiency of this new model, results across 12 healthy subjects were measured. Incorporating 
predictive spelling increased typing speed using the P300 speller, with an average increase of 15.5% 
in typing rate across subjects, demonstrating that language models can be effectively utilized 
to create full word suggestions for predictive spelling. When combining predictive spelling with 
language-model classification, typing speed is significantly improved, resulting in better typing 
performance.

1. Introduction

Neurodegenerative diseases such as ALS restrict an 
individual’s ability to fully engage with his or her sur-
roundings by interrupting crucial cell signaling processes 
between the brain and the peripheral nervous system. 
Brain-computer interface systems including the P300 
speller present a promising alternative to traditional 
communication methods by translating neural signals 
into text, effectively bypassing the affected pathways [1]. 
Subjects using the P300 focus on a target character in 
a grid while stimuli consisting of highlighted rows and 
columns are presented. When the target character is high-
lighted, a response signal is evoked, which can be detected 
to determine the target character. Current challenges 
to the P300 system include a low signal-to-noise ratio 
(SNR), which slows down typing speed, as several stim-
uli are necessary to achieve an accurate signal reading. 
Studies have attempted to accelerate typing speed by opti-
mizing different aspects of the system, including grid size 
[2–4], system parameters [5–7], stimulus-presentation 

methods [3,8], signal-processing methods [9–12], and 
stimulus types [13].

The domain of natural language has been well studied 
in other fields such as speech recognition and this knowl-
edge can be used to aid in any communication system 
[14]. By modeling the patterns and structures of natural 
language, typing speed and accuracy can be improved, 
and other features such as word completion or automatic 
error correction can be added [15]. One language-based 
method that has been shown to significantly improve the 
speed of BCI systems is predictive spelling (PS), which 
allows users to type completed words. Similar to meth-
ods used in text messaging [16] and augmentative and 
alternative communication (AAC) devices [17], systems 
with PS analyze previous character selections to suggest 
full words to the user. One of the earliest implementa-
tions was presented by Ryan et al. [18], who directed P300 
output to Quillsoft WordQ2 (version 2.5, Quillsoft, Ltd, 
Toronto, ON), assistive software which suggested word 
completions, which could then be selected by typing 
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0.1–60  Hz. Additional artifact detection (e.g. eye blink 
detection) was not performed and it was left to the classi-
fier to determine whether a signal contained a valid ERP. 
The electrode set consisted of a previously reported set of 
32 electrodes [7]. The subjects for the online study con-
sisted of 12 healthy volunteers with normal or correct-
ed-to-normal vision between the ages of 20 and 35. The 
system used a 6 × 6 character grid, famous-faces stimuli 
[13], row and column flashes, and a stimulus onset asyn-
chrony of 125 ms. During sessions with PS enabled, sug-
gested words appeared on the top row of the grid and the 
numbers 1–6 were removed (Figure 1). Using the stand-
ard interface, a 3.5-s gap was included between characters 
to allow subjects time to find the next character in the 
sequence. When PS was enabled, this gap was increased 
to 5 seconds to allow for the additional task of checking 
suggested word completions for the target word.

Each experimental session consisted of three train-
ing trials followed by two online testing trials, one with 
and one without PS. Each training trial consisted of copy 
spelling a preselected 10-character phrase. For the online 
portion, subjects were instructed to decide on a phrase of 
their choosing that consisted of approximately 10 words. 
For each of the online trials, the subject had 5 minutes to 
spell as much as they could of their phrase using the PF 
classifier with and without PS enabled. Counterbalancing 
was realized by flipping a coin to determine whether 
PS would be enabled in the first or second online trial. 
Subjects were instructed not to correct errors and to repeat 
the phrase if they completed it in under 5 minutes. If the 
system incorrectly picked a word completion, subjects 
were instructed to move to the next word rather than 
attempting to continue spelling the current word.

BCI2000 was used for data acquisition and online 
analysis [27]. Statistical analysis was performed using 
MATLAB (version 8.6.0, MathWorks, Inc, Natick, MA).

2.2. Language model

The model of the English language used in this study is 
identical to the probabilistic automata model described 
previously by Speier et al. [26]. This model consists of a 
directed graph with states for every substring that starts 
a word in the corpus, starting with a blank root node 
(Figure 2). Each node has directed edges to nodes that 
add a single character to the string. Thus, a model of a 
vocabulary consisting only of the word ‘THE’ would 
result in four states: the root node representing a blank 
string, ‘T’, ‘TH’, and ‘THE’. When the word ‘THAT’ is 
added to the model, it shares the root node and the ‘T’ 
and ‘TH’ states, and adds two additional states: ‘THA’ 
and ‘THAT’. The state ‘TH’ then links to both the states 
‘THE’ and ‘THA’.

corresponding numbers from the standard interface. This 
implementation offered a significant improvement in the 
number of characters typed per minute in comparison to 
the standard paradigm, but had lower selection accuracy. 
Kaufmann et al. [19] implemented a similar approach, 
which integrated PS into the graphical interface of the 
P300 speller by replacing numbers with the most com-
mon words from a corpus of German newspaper articles. 
Streamlining the presentation of the suggested selections 
significantly improved the number of characters selected 
per minute, but also maintained the accuracy from the 
non-PS paradigm.

While these PS implementations have been shown to 
improve performance over the standard system, they have 
the shortcoming that they give all suggested words the 
same weight during selection, regardless of their relative 
likelihood. Another effective implementation of language 
models in the P300 speller has been to provide prior prob-
abilities for character selections. These models use corpora 
of text to determine character probabilities based on those 
previously selected. Early examples used naïve Bayes or 
hidden Markov models to incorporate n-gram language 
models, which demonstrated significant improvements in 
system speed and accuracy [20–25]. More sophisticated 
language models have been implemented using sampling 
methods such as particle filtering (PF) to further improve 
accuracy by giving stronger prior probabilities to target 
characters and automatically correcting errors [26]. We 
hypothesize that these methods can be extended to pro-
vide probabilities for suggested words by weighting them 
based on their relative frequencies.

The goal of this study was to extend a previously 
reported PF method for P300 signal classification to create 
word suggestions for PS [26]. Using a word-based language 
model, a probability distribution over possible character 
and word targets is made by sampling the possible targets 
in the model. The resulting distribution provides both a set 
of suggested target words, and a probability distribution 
over the possible selections that is used as a prior probabil-
ity. We compared online performance using the modified 
model with that using the standard PF model in a set of 
healthy subjects to determine whether incorporating PS 
yields improvements over using language models for prior 
probabilities alone.

2. Materials and methods

2.1. Data collection

All data were acquired using g.tec amplifiers, active EEG 
electrodes, and electrode caps (Guger Technologies, 
Graz, Austria), sampled at 256 Hz, referenced to the left 
ear, grounded to AFZ, and filtered using a passband of 
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States that represent completed words contain links 
back to the root node to begin a new word. The state 
‘THE’, for instance, links to the root because ‘THE’ is a 
complete word, but it also is the beginning of other words 
so it has additional links to other states such as ‘THEM’ 
or ‘THEY’. Transition probabilities are determined by the 
relative frequencies of substrings in the Brown English-
language corpus [28].
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where m is the index of the last root node in the sequence 
x0:t-1, and c

(
xm:t

)
 is the number of occurrences of words 

that start with the string xm:t in the corpus. For instance, 
the probability of typing the letter ‘E’ after ‘TH’ has already 
been entered is found by dividing the number of occur-
rences of words that begin with ‘THE’ by the number of 
times words start with ‘TH’ in the corpus. Similarly, the 
probability that a word ends and the state transitions back 
to the root is the ratio of the number of times that word 
occurs in the corpus over the number of word occurrences 
starting with that substring.

2.3. Classifier

Because it is impractical to compute the probability dis-
tribution over all possible strings typed by the user in real 
time, the probability distribution is estimated using the PF 
classifier. This classifier estimates the probability distribu-
tion over possible outputs by sampling a batch of possible 
realizations of the model (i.e. a batch of output strings that 
could have been typed by the user). Each of these realiza-
tions is called a particle, which contains a pointer to a node 
in the model and represents one possible configuration of 
the model at a given time. Each of these particles moves 
through the language model independently, based on the 
model transition probabilities. Low-probability realiza-
tions are periodically replaced by more likely realizations 
by resampling the particles based on weights derived from 
the observed EEG responses. The algorithm estimates the 

Figure 1. images of the character grids used in standard (a) and predictive spelling (ps) (b–d) trials. in ps trials, the six most likely words 
are presented in the top row of the grid given the previously typed characters. three examples are shown with no entered text (b), after 
entering the letter ‘H’ (c), and after entering the string ‘He’ (d).

Figure 2. example model of a vocabulary consisting of the words 
‘at’, ‘tHe’, ‘tHem’, and ‘tHat’. shaded states represent complete 
words that have links back to the root node.



16   W. SPEIER ET AL.

 

where p
(
xt|x(j)0:t−1

)
 is provided by the language model 

as in Equation 1. When a particle transitions between 
states, its pointer changes from the previous state in 
the model, xt-1, to the new state xt. The history for each 
particle, x(j)0:t, is stored to represent the output character 
sequence associated with that particle. After each stimu-
lus response, the score for that response, yit, is computed 
and the probability weight is updated for each of the 
particles:

 

where f
(
yit|x(j)n

)
 is computed as in Equation 2. The 

weights are then normalized and the probability of an 
output string is found by summing the weights of all par-
ticles that correspond to that string.

 

where δ is the Kronecker delta. Dynamic classifica-
tion was implemented by setting a threshold proba-
bility, pthresh, to determine when a decision should be 
made. The program flashes characters until either 
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number of sets of flashes reaches the maximum (10). 
The classifier then selects the string that satisfied 
argmaxx0:t p

(
x0:t|y1:t

)
. If characters in this output differ 

from the previous output text, the previous characters 
are assumed to be errors and are replaced by those in 
the current string. A new batch of particles, x∗t , are then 
sampled from the current particles, xt, based on the 
weight distribution, wt. Each of the new particles is then 
assigned an equal weight w∗(j)

t = 1∕P. The subject then 
moves on to the next character and the process then 
repeats with the new batch of particles. The optimi-
zation of pthresh is impractical for online experiments, 
so a previously reported value of 0.95 was used for all 
trials [17].

2.4. Predictive spelling

When PS is added to the model, the same classifier and 
language model are used, but the projection step is mod-
ified in order to estimate the probabilities of potential 
completed words. When particles are being projected, a 
proportion, ρ, of them continue moving throughout the 
model until they reach the root node. Figure 3 contains 
pseudo-code describing the process of particle projec-
tion in the PS-enabled model. Note that because particles 
can move multiple steps in one transition, the length of 
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probability distribution of the possible output strings by 
finding the proportion of the particles that point to each 
state after they have moved through the model.

In order to determine the probability that the user 
is attempting to type a given character xt based on the 
observed signals, stepwise linear discriminant analy-
sis (SWLDA) is used to select a set of signal features to 
include in a discriminant function [29]. During training, 
the algorithm uses ordinary least-squares regression to 
predict class labels and iteratively adds the most significant 
features and removes the least significant features until 
either the target number of features is met or it reaches a 
state where no features are added or removed [10]. The 
score for flash i for character t, yit, can then be computed 
as the dot product of the feature weight vector with the 
features from that trial’s signal. It has been shown that 
scores can be approximated as independent samples from 
a Gaussian distribution given the target character [19].

 

where μa, �
2
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n are the means and variances of the 
distributions for the attended and non-attended flashes, 
respectively, and Ai

t is the set of characters highlighted 
in flash i. The conditional probability of a target at time 
t given the EEG signal and the previous target characters 
x0:t-1 can then be found:

 

where p
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)
 is the prior probability of character xn 

given the previously selected characters, determined from 
the language model. Because the previous target charac-
ters are unknown, it is necessary to compute the proba-
bility over all possible output strings. This computation 
is impractical, so the distribution needs to be estimated 
using sampling methods such as particle filtering.

In particle filtering, a set number of samples (i.e. par-
ticles) are created to estimate the distribution over the 
language model. Each particle j consists of a link to a state 
in the language model, x(j)t , a string consisting of the parti-
cle’s state history, x(j)0:t, the index of the last time the particle 
was in the root node, m, and a weight, w(j). When the 
system begins, a set of P particles is generated and each is 
associated with the root node with an empty history and 
a weight equal to 1/P. At the start of a new character, a 
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proposed distribution defined by the language model’s 
transition probabilities from the particle’s history, x(j)0:t−1.
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(36)) and errors are assumed to be uniform across all pos-
sible characters, so

 

where ACCc =
∑

t �
zt
xt

n
 is the single-character accuracy and 

n is the total number of characters selected. This reduces 
the bit rate to

 

This is then multiplied by the average number of charac-
ters selected per minute (CPM = n/time) to produce the 
ITR [26].

 

One problem introduced by including PS is that sentences 
including erroneous word completions could be a differ-
ent length from the target. Comparing at the character 
level no longer works in this case. One solution is to 
base accuracy on the Levenshtein distance (LD) (i.e. the 
minimum number of insertions, deletions, and replace-
ments required to convert x into z) [30]. We then have 
ACCc =

n−LD(x,z)

n
 and the equations above hold.

It has previously been pointed out that ITR overesti-
mates the amount of information conveyed by the system 
because characters do not occur with equal frequency [31]. 
Also, the amount of information that ITR assigns to a word 
is based largely on the word’s length. This metric assigns 
a significantly higher amount of information to incorrect 
strings that share characters with the target, regardless of 
whether they make syntactic sense or possibly confuse the 
meaning (Table 1). An alternative would be to base the 
metric on word frequency (p
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). The accuracy 
can then be computed as the fraction of correct words 
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the particle history can now be greater than t, so it is 
denoted n. Each particle can have different values of n 
and m; the subscript j is omitted for these values here 
for simplicity.

After projection, the probability distribution over 
words is found by summing the weights of particles that 
have been projected forward to completed words

 

The top K of these words are then added to designated 
locations in the character grid (Figure 1). EEG responses 
associated with flashing those cells are applied to the par-
ticles that have been projected to those words. Particles 
that were projected to lower-probability words are given 
zero probability and will be replaced during the next res-
ample phase. In this study, the probability of a complete 
word selection was set empirically to .40 and six word 
suggestions were presented to the user.

2.5. Evaluation

Evaluation of a BCI system must take into account two 
factors: the ability of the system to achieve the desired 
result and the amount of time required to reach that result. 
Because there is a trade-off between speed and accuracy, 
evaluation in BCI communication literature is tradition-
ally based on the mutual information between the selected 
character, x, and the target character, z, referred to as the 
bit rate (BR).

 

In the most common metric, the information transfer rate 
(ITR), the probabilities for all characters are assumed to 
be the same (p(x) = 1

N
 where N is the size of the alphabet 
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Figure 3. pseudo-code for projection of particles.

Table 1. Bit rate values using the information transfer rate (itr) 
and mutual information (mi) methods as well as word and char-
acter accuracies (aCCW and aCCC, respectively) for example out-
put strings resulting from attempts to type the string ‘HeLLo_
WorLD_’. 

notes: the numbers marked with an asterisk are obtained by using the Lev-
enshtein distance to compute accuracy. using the new method, the infor-
mation rate for incorrect words is the same regardless of word length or 
similarity to the target.

Typed text ACCC ITR ACCW MI
HeLLo WorLD_ (target) 100 43.00 100 14.66
HeLLo WouLD_ 91.7 41.43 50 5.93
HeLLo WHirL_ 66.7 27.63 50 5.93
HeLLo pLanet_ 50* 24.95* 50 5.93
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Because the distributions for speeds, accuracies, and bit 
rates are not normally distributed, significance was tested 
for all metrics using Wilcoxon signed-rank tests.

3. Results

3.1. EEG response

Subjects demonstrated a negative inflection in their 
EEG responses at a latency of 200 ms, and a positive 
inflection at a latency of 300  ms (Figure 4). These 
responses are consistent with the N200 and P300 
responses that have previously been reported when 
using famous-faces stimuli [13]. No significant dif-
ference was found between the EEG responses when 

 

The bit rate then becomes
 

The mutual information can then be found by multiplying 
by the words selected per minute (WPM =

n�

time
).
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Figure 4. average stimulus response for subject B for attended (solid) and non-attended (dashed) stimuli in online trials when attending 
on a signal character (a) or a completed word (b). signals are averaged across four channels: CpZ, poZ, po7, and po8.
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4. Discussion

Overall, incorporating PS increased typing speed using the 
P300 speller, with an average increase of 15.5% in typing 
rate across subjects. The speed increase of 1.6 characters/
minute on average was comparable to the previous studies 
by Ryan et al. (1.5 characters/minute) [18] and Kaufmann 
et al. (1.6 characters/minute) [19], although from a much 
higher baseline (11.2 characters/minute compared to 3.76 
characters/minute and 2.01 characters/minute, respec-
tively). This increase was primarily a result of the ability 
to choose multiple characters at once. The actual rate of 
selections decreased, mainly due to the extra time allotted 
between characters for checking the suggested words, but 
the additional characters typed during word completions 
more than offset this decrease (Table 4). The amount of 
benefit provided by PS is largely tied to the length of the 
words the subject wishes to spell and the frequency of the 
words in the corpus, which influences how many charac-
ters the subject must type before it becomes a suggestion. 
For uncommon words, the PS method was actually detri-
mental to the typing rate as subjects were required to type 
out most or all characters at a lower speed. In aggregate, 

subjects were focusing on single characters versus the 
suggested completed words.

3.2. Online performance

Using traditional evaluation metrics, all 12 subjects were 
able to type characters with at least 80% accuracy using 
each of the algorithms and all but one of the subjects were 
able to type at least 10 characters per minute (Table 2). 
When PS was enabled, 6 of the 12 subjects achieved at 
least 95% accuracy and a typing speed over 12 characters/
minute.

Nine of 12 subjects achieved a higher bit rate when 
using PS than when using the PF method alone. When 
using the PF algorithm alone, subjects selected an aver-
age of 11.16 characters/minute with 96.79% accuracy, 
resulting in an average bit rate of 53.89 bits/minute. 
When incorporating PS, subjects achieved significant 
speed improvements, with an average CPM of 12.72 
characters/minute (p = .002) and an average bit rate 
of 59.39 bits/minute (p = .046). PS resulted in a small 
accuracy decrease that was not statistically significant 
(p = .71).

When using word-level metrics, 10 of 12 subjects 
achieved a higher bit rate when using PS than when using 
the PF method alone (Table 3). Using the PF algorithm, 
subjects typed an average of 2.19 words/minute with 
89.86% accuracy, resulting in an average bit rate of 13.79 
bits/minute. Incorporating PS resulted in significant speed 
improvements, with an average WPM of 2.53 words/minute  
(p < .0001) and an average bit rate of 16.54 bits/minute 
(p = .0012). When considered on the word level, PS also 
saw a small accuracy increase that was not statistically 
significant (p = .21).

Table 2. selection rates (Cpm), accuracies (aCCC), and information 
transfer rates (itr) for each subject in online spelling using the 
particle filter (pf) classifier with and without predictive spelling 
(ps) enabled.

 

CPM (characters/
minute) ACCC (%) ITR (bits/minute)

PF PF-PS PF PF-PS PF PF-PS
a 11.68 15.07 97.92 100.00 57.45 77.89
B 11.41 14.07 100.00 100.00 58.99 72.72
C 10.34 13.35 98.04 87.69 50.98 53.40
D 11.78 14.27 89.66 96.77 49.02 68.48
e 10.20 11.26 94.00 92.86 46.26 49.90
f 11.30 13.51 98.21 82.09 55.91 48.27
G 10.45 12.07 96.15 100.00 49.49 62.38
H 12.28 14.23 100.00 98.57 63.51 71.01
i 12.23 12.25 96.72 85.51 58.62 46.90
J 9.84 9.56 100.00 100.00 50.86 49.41
K 11.42 12.64 100.00 100.00 59.02 65.34
L 10.96 10.35 90.74 94.12 46.57 47.04
average 11.16 12.72 96.79 94.80 53.89 59.39

Table 3. Word-level metrics for online trials consisting of the num-
ber of words typed per minute (Wpm), the percentage of words 
typed correctly (aCCW), and the mutual information (mi) between 
the target and typed sentences when using the particle filter (pf) 
classifier with and without predictive spelling (ps) enabled.

 

WPM (words/
minute) ACCW (%) MI (bits/minute)

PF PF-PS PF PF-PS PF PF-PS
a 1.87 2.25 83.33 100.00 10.57 16.49
B 2.24 2.78 100.00 100.00 16.43 20.39
C 2.43 3.05 91.67 87.50 15.65 18.40
D 2.37 2.79 75.00 92.86 11.71 18.24
e 1.84 2.41 88.89 83.33 11.33 13.65
f 2.37 2.70 83.33 78.57 13.44 14.14
G 2.21 2.53 81.82 100.00 12.21 18.51
H 2.29 2.65 100.00 92.86 16.80 17.37
i 2.17 2.42 90.91 83.33 13.80 13.69
J 1.90 1.88 100.00 100.00 13.91 13.78
K 2.14 2.37 100.00 100.00 15.69 17.37
L 2.45 2.52 83.33 92.31 13.89 16.38
average 2.19 2.53 89.86 92.56 13.79 16.54

Table 4. example online output for typing with and without pre-
dictive spelling (ps). each row is the result of subject H attempt-
ing to spell ‘Wise men saY forGiVeness is DiVine But neVer 
paY fuLL priCe for Late piZZa’ for 5 minutes. Bold characters 
are errors and underlined characters are those selected using ps.

Method Output
target Wise men saY forGiVeness is DiVine But neVer paY fuLL 

priCe for Late piZZa
pf Wise men saY forGiVeness is DiVine But neVer paY fuLL 

priCe f
pf-ps Wise men saY forGiVeness is DiVine But neVer paY fuLL 

priCe fAr Late p
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type would make typed words appear as options sooner, 
thereby improving the performance of a system with PS.

4.1. Limitations and future directions

The language model used in the current system does not 
allow for words that are outside of the vocabulary (OOV) 
because they did not appear in the training  corpus. 
Previous models have allowed for such words by using 
character patterns, such as n-grams, rather than requir-
ing full words from the corpus [20,24,32]. However, these 
methods have been shown to be less effective than the 
model used in this study [26]. A model that has the capa-
bilities of both of these frameworks can be created by 
introducing smoothing, which effectively uses the word-
based model for words that appear in the corpus, but 
then reverts to a character-based model for OOV words. 
Similar methods have been previously used for smooth-
ing between high-dimensional character models and sim-
pler ones [33,34]. Implementing such a method would 
be advantageous in a realistic setting where subjects are 
likely to want to use words that are uncommon in general 
language, such as proper nouns.

Because EEG signals are susceptible to various sources 
of noise, it could be beneficial to add filters specifically 
designed to remove artifacts. Artifacts that are uncorre-
lated with the target stimulus (e.g. background noise, wire 
movement, spurious eye blinks) would probably decrease 
signal-to-noise, thereby reducing the accuracy of the sys-
tem. If artifacts are consistent and correlated with the tar-
get stimulus (e.g. the subject moves or blinks after every 
target stimulus), then they may artificially inflate system 
performance. While we did not observe movements or 
unusual blinking patterns by subjects during trials, future 
studies could use monitors such as eye trackers to verify 
that this was not taking place.

This study was conducted using healthy volunteers who 
did not have the same constraints as ‘locked-in’ patients, 
such as restrictions to eye gaze. While the classifier used 
in this study was previously tested in the ALS popula-
tion [15], it is unclear whether the added requirement 
of checking word suggestions will be more difficult and 
therefore offset the gains seen by typing multiple char-
acters at once. The healthy subjects in this study gener-
ally had no problems with the additional cognitive task 
of scanning through the suggested words, and therefore 
appreciated the added speed that predictive text afforded. 
However, it is possible that this additional task will make 
the system more taxing for ALS patients, which could 
make it less practical despite the performance increase. 
Commercial systems based on eye tracking such as the 
Tobii Dynavox system (Tobii Technology, Inc., Stockholm, 
Sweden) already incorporate word suggestions, so it is 

however, PS was beneficial as all but one of the subjects 
saw increased WPM values.

By incorporating PS, word accuracy increased from 
89.85% to 92.56%, while character accuracy decreased 
from 96.79% to 94.80%. While this decrease was not sta-
tistically significant, it could have occurred because incor-
rect word completions can be drastically different from 
the target word, resulting in several incorrect characters 
in the same word. Output using PS therefore has fewer 
incorrect words, but those words that are typed incorrectly 
often have more errors than when typing without PS. It is 
possible that incorrect words can contain some additional 
information about the word the user was attempting, 
which could mean that words that are close to the target 
could convey more information than those with multiple 
errors. However, this information is usually dependent on 
the target and erroneous words as well as the surrounding 
context. For instance, erroneously replacing a word with 
a different part of speech can make the error obvious, 
allowing the reader to use context to figure out the tar-
get. If the error is the same part of speech as the target, 
however, the new sentence can be grammatically correct, 
but with different meaning. Future studies can analyze a 
reader’s ability to understand the meaning of typed strings 
in the presence of errors to determine the true effect on 
the information conveyed.

The benefit of the PS option is tied directly to the user’s 
ability and preference to use it. Even with PS enabled, 
the user has the choice to ignore suggestions and instead 
continue to spell out words one character at a time. If PS 
is enabled and not used, it probably reduces spelling speed 
because of the increased pause between characters. It can 
also reduce accuracy because a fraction of the particles are 
reserved for selections, so the system is effectively oper-
ating on a reduced number of particles and, therefore, a 
less precise estimation of the probability distribution. For 
instance, the phrase chosen by subject L contained the 
word ‘WANT’, which, after two selections, was included as 
one of the suggested options. The subject instead spelled 
out the word using individual characters despite the fact 
that the correct word remained in the list of completions 
for each of the last three selections. The inability of this 
subject to locate suggestions probably contributed to the 
fact that he had a slower typing speed using PS. Increased 
use could have allowed this subject to become more famil-
iar with the system and therefore take full advantage of the 
potential improvements PS provides. In another instance, 
subject J chose a six-word phrase where two of the words 
were relatively low probability in the model and were 
never offered as completions. This subject was therefore 
required to type these words out completely, resulting in 
a lower typing speed when PS was enabled. A corpus tar-
geted more towards words the specific user is likely to 
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 [5]  McFarland DJ, Sarnacki WA, Wolpaw JR. Brain-computer 
interface (BCI) operation: optimizing information 
transfer rates. Biol Psychol. 2003;63:237–251.

 [6]  McFarland DJ, Sarnacki WA, Townsend G, et al. The 
P300-based brain-computer interface (BCI): effects of 
stimulus rate. Clin Neurophysiol. 2011;122(4):731–737.

 [7]  Lu J, Speier W, Hu X, et al. The effects of stimulus timing 
features on P300 speller performance. Clin Neurophysiol.. 
2013;124(2):306–314.

 [8]  Jin J, Horki P, Brunner C, et al. A new P300 stimulus 
presentation pattern for EEG-based spelling systems. 
Biomed Tech. 2010;55:203–210.

 [9]  Kaper M, Meinicke P, Grossekathoefer U, et al. BCI 
competition 2003 - data set IIb: support vector machines 
for the P300 speller paradigm IEEE. Trans Biomed Eng. 
2004;50:1073–1076.

[10]  Krusienski DJ, Sellers EW, Cabestaing F, et al. A 
comparison of classification techniques for the P300 
Speller. J Neural Eng. 2006;3(4):299–305.

[11]  Xu N, Gao X, Hong B, et al. BCI competition 2003 - data 
set IIb: enhancing P300 wave detection using ICA-based 
subspace projections for BCI applications IEEE. Trans 
Biomed Eng. 2004;51:1067–1072.

[12]  Serby H, Yom-Tov E, Inbar GF. An improved P300-
based brain-computer interface. IEEE Trans Neural Syst 
Rehabil Eng. 2005;13(1):89–98.

[13]  Kaufmann T, Schulz SM, Grünzinger C, et al. Flashing 
characters with famous faces improves ERP-based 
brain–computer interface performance. J Neural Eng. 
2011;8(5):056016.

[14]  Jelinek F. Statistical methods for speech recognition. 
Cambridge (MA): MIT Press; 1998.

[15]  Speier W, Chandravadia N, Roberts D, et al. Online BCI 
typing using language model classifiers by ALS patients in 
their homes brain-computer. Interfaces. 2016;4:114–121.

[16]  Dunlop MD, Crossan A. Predictive text entry methods 
for mobile phones. Pers Technol. 2000;4:134–143.

[17]  Darragh JJ, Witten IH and James ML 1990. The reactive 
keyboard: a predictive typing aid computer. Long Beach 
Calif. 23: 41–49

[18]  Ryan DB, Frye GE, Townsend G, et al. Predictive spelling 
with a P300-based brain–computer interface: increasing 
the rate of communication. Int J Hum Comput Interact. 
2010;27(1):69–84.

[19]  Kaufmann T, Völker S, Gunesch L, et al. Spelling is just 
a click away–a user-centered brain–computer interface 
including auto-calibration and predictive text entry 
Front. Neurosci. 2012;6:72.

[20]  Speier W, Arnold C, Lu J, et al. Natural language 
processing with dynamic classification improves P300 
speller accuracy and bit rate. J Neural Eng. 2011;9:16004.

[21]  Jaeyoung Park J, Kee-Eung Kim K-E. A POMDP approach 
to optimizing P300 speller BCI paradigm. Neural Syst 
Rehabil Eng IEEE Trans. 2012;20(4):584–594.

[22]  Kindermans P-J, Verschore H, Verstraeten D, et al. A P300 
BCI for the masses: prior information enables instant 
unsupervised spelling advances in neural information 
processing systems;2012. p. 710–718

[23]  Speier W, Knall J Pouratian N. Unsupervised training of brain-
computer interface systems using expectation maximization 
Neural Engineering (NER), 2013 6th International IEEE/
EMBS Conference on (IEEE); 2013. p. 707–710

likely that PS will be beneficial in the target population. 
However, future studies in the ALS population should 
be conducted to determine how these results in healthy 
subjects translate to the affected population. If predictive 
text is a hindrance to some subjects, subjects still have the 
option to ignore the suggestions and type out individual 
characters, so incorporating predictive text should not 
ever hinder a subject’s ability to use the system.

5. Conclusion

Language models used for improving classification speed 
and accuracy in the P300 speller can be effectively  utilized 
to create whole-word suggestions for PS. When combin-
ing PS with language-model classification, typing speed 
is significantly improved, resulting in better typing per-
formance. Using these methods can make evaluation dif-
ficult because the assumptions of traditional metrics are 
violated. Evaluating on a word level can overcome some 
of these difficulties to more accurately evaluate P300 
performance.
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